Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets.

Identifieur interne : 000A92 ( Main/Exploration ); précédent : 000A91; suivant : 000A93

Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets.

Auteurs : James A. Hay [Royaume-Uni] ; Karen Laurie [Australie] ; Michael White [France] ; Steven Riley [Royaume-Uni]

Source :

RBID : pubmed:31425503

Descripteurs français

English descriptors

Abstract

The strength and breadth of an individual's antibody repertoire is an important predictor of their response to influenza infection or vaccination. Although progress has been made in understanding qualitatively how repeated exposures shape the antibody mediated immune response, quantitative understanding remains limited. We developed a set of mathematical models describing short-term antibody kinetics following influenza infection or vaccination and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or without adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit models with various immunological mechanisms that have been empirically observed but have not previously been included in mathematical models of antibody landscapes, including: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity. Based on the parameter estimates of the best supported models, we describe a number of key immunological features. We found quantifiable differences in the degree of homologous and cross-reactive antibody boosting elicited by different exposure types. Infection and adjuvanted vaccination generally resulted in strong, broadly reactive responses whereas unadjuvanted vaccination resulted in a weak, narrow response. We found that the order of exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the second dose of adjuvanted vaccination resulted in substantially greater antibody boosting than the first. Either antigenic seniority or a titre ceiling effect were included in the two best fitting models, suggesting a role for a mechanism describing diminishing antibody boosting with repeated exposures. Although there was considerable uncertainty in our estimates of antibody waning parameters, our results suggest that both short and long term waning were present and would be identifiable with a larger set of experiments. These results highlight the potential use of repeat exposure animal models in revealing short-term, strain-specific immune dynamics of influenza.

DOI: 10.1371/journal.pcbi.1007294
PubMed: 31425503
PubMed Central: PMC6715255


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets.</title>
<author>
<name sortKey="Hay, James A" sort="Hay, James A" uniqKey="Hay J" first="James A" last="Hay">James A. Hay</name>
<affiliation wicri:level="3">
<nlm:affiliation>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laurie, Karen" sort="Laurie, Karen" uniqKey="Laurie K" first="Karen" last="Laurie">Karen Laurie</name>
<affiliation wicri:level="3">
<nlm:affiliation>WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Seqirus, 63 Poplar Road, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Seqirus, 63 Poplar Road, Parkville, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="White, Michael" sort="White, Michael" uniqKey="White M" first="Michael" last="White">Michael White</name>
<affiliation wicri:level="3">
<nlm:affiliation>Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riley, Steven" sort="Riley, Steven" uniqKey="Riley S" first="Steven" last="Riley">Steven Riley</name>
<affiliation wicri:level="3">
<nlm:affiliation>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31425503</idno>
<idno type="pmid">31425503</idno>
<idno type="doi">10.1371/journal.pcbi.1007294</idno>
<idno type="pmc">PMC6715255</idno>
<idno type="wicri:Area/Main/Corpus">000747</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000747</idno>
<idno type="wicri:Area/Main/Curation">000747</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000747</idno>
<idno type="wicri:Area/Main/Exploration">000747</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets.</title>
<author>
<name sortKey="Hay, James A" sort="Hay, James A" uniqKey="Hay J" first="James A" last="Hay">James A. Hay</name>
<affiliation wicri:level="3">
<nlm:affiliation>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laurie, Karen" sort="Laurie, Karen" uniqKey="Laurie K" first="Karen" last="Laurie">Karen Laurie</name>
<affiliation wicri:level="3">
<nlm:affiliation>WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Seqirus, 63 Poplar Road, Parkville, Victoria, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Seqirus, 63 Poplar Road, Parkville, Victoria</wicri:regionArea>
<wicri:noRegion>Victoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="White, Michael" sort="White, Michael" uniqKey="White M" first="Michael" last="White">Michael White</name>
<affiliation wicri:level="3">
<nlm:affiliation>Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riley, Steven" sort="Riley, Steven" uniqKey="Riley S" first="Steven" last="Riley">Steven Riley</name>
<affiliation wicri:level="3">
<nlm:affiliation>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjuvants, Immunologic (administration & dosage)</term>
<term>Animals (MeSH)</term>
<term>Antibodies, Viral (blood)</term>
<term>Computational Biology (MeSH)</term>
<term>Cross Reactions (MeSH)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Ferrets (immunology)</term>
<term>Humans (MeSH)</term>
<term>Immunization, Secondary (MeSH)</term>
<term>Influenza A Virus, H1N1 Subtype (immunology)</term>
<term>Influenza A Virus, H3N2 Subtype (immunology)</term>
<term>Influenza Vaccines (administration & dosage)</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Immunological (MeSH)</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (virology)</term>
<term>Vaccines, Inactivated (administration & dosage)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adjuvants immunologiques (administration et posologie)</term>
<term>Animaux (MeSH)</term>
<term>Anticorps antiviraux (sang)</term>
<term>Biologie informatique (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Furets (immunologie)</term>
<term>Grippe humaine (immunologie)</term>
<term>Grippe humaine (prévention et contrôle)</term>
<term>Humains (MeSH)</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Infections à Orthomyxoviridae (virologie)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Modèles immunologiques (MeSH)</term>
<term>Rappel de vaccin (MeSH)</term>
<term>Réactions croisées (MeSH)</term>
<term>Sous-type H1N1 du virus de la grippe A (immunologie)</term>
<term>Sous-type H3N2 du virus de la grippe A (immunologie)</term>
<term>Vaccins antigrippaux (administration et posologie)</term>
<term>Vaccins inactivés (administration et posologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Adjuvants, Immunologic</term>
<term>Influenza Vaccines</term>
<term>Vaccines, Inactivated</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Antibodies, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Adjuvants immunologiques</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins inactivés</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Furets</term>
<term>Grippe humaine</term>
<term>Infections à Orthomyxoviridae</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Ferrets</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Influenza, Human</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Anticorps antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Computational Biology</term>
<term>Cross Reactions</term>
<term>Disease Models, Animal</term>
<term>Humans</term>
<term>Immunization, Secondary</term>
<term>Kinetics</term>
<term>Models, Immunological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Cinétique</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Modèles immunologiques</term>
<term>Rappel de vaccin</term>
<term>Réactions croisées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The strength and breadth of an individual's antibody repertoire is an important predictor of their response to influenza infection or vaccination. Although progress has been made in understanding qualitatively how repeated exposures shape the antibody mediated immune response, quantitative understanding remains limited. We developed a set of mathematical models describing short-term antibody kinetics following influenza infection or vaccination and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or without adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit models with various immunological mechanisms that have been empirically observed but have not previously been included in mathematical models of antibody landscapes, including: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity. Based on the parameter estimates of the best supported models, we describe a number of key immunological features. We found quantifiable differences in the degree of homologous and cross-reactive antibody boosting elicited by different exposure types. Infection and adjuvanted vaccination generally resulted in strong, broadly reactive responses whereas unadjuvanted vaccination resulted in a weak, narrow response. We found that the order of exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the second dose of adjuvanted vaccination resulted in substantially greater antibody boosting than the first. Either antigenic seniority or a titre ceiling effect were included in the two best fitting models, suggesting a role for a mechanism describing diminishing antibody boosting with repeated exposures. Although there was considerable uncertainty in our estimates of antibody waning parameters, our results suggest that both short and long term waning were present and would be identifiable with a larger set of experiments. These results highlight the potential use of repeat exposure animal models in revealing short-term, strain-specific immune dynamics of influenza.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31425503</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets.</ArticleTitle>
<Pagination>
<MedlinePgn>e1007294</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1007294</ELocationID>
<Abstract>
<AbstractText>The strength and breadth of an individual's antibody repertoire is an important predictor of their response to influenza infection or vaccination. Although progress has been made in understanding qualitatively how repeated exposures shape the antibody mediated immune response, quantitative understanding remains limited. We developed a set of mathematical models describing short-term antibody kinetics following influenza infection or vaccination and fit them to haemagglutination inhibition (HI) titres from 5 groups of ferrets which were exposed to different combinations of trivalent inactivated influenza vaccine (TIV with or without adjuvant), A/H3N2 priming inoculation and post-vaccination A/H1N1 inoculation. We fit models with various immunological mechanisms that have been empirically observed but have not previously been included in mathematical models of antibody landscapes, including: titre ceiling effects, antigenic seniority and exposure-type specific cross reactivity. Based on the parameter estimates of the best supported models, we describe a number of key immunological features. We found quantifiable differences in the degree of homologous and cross-reactive antibody boosting elicited by different exposure types. Infection and adjuvanted vaccination generally resulted in strong, broadly reactive responses whereas unadjuvanted vaccination resulted in a weak, narrow response. We found that the order of exposure mattered: priming with A/H3N2 improved subsequent vaccine response, and the second dose of adjuvanted vaccination resulted in substantially greater antibody boosting than the first. Either antigenic seniority or a titre ceiling effect were included in the two best fitting models, suggesting a role for a mechanism describing diminishing antibody boosting with repeated exposures. Although there was considerable uncertainty in our estimates of antibody waning parameters, our results suggest that both short and long term waning were present and would be identifiable with a larger set of experiments. These results highlight the potential use of repeat exposure animal models in revealing short-term, strain-specific immune dynamics of influenza.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hay</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">0000-0002-1998-1844</Identifier>
<AffiliationInfo>
<Affiliation>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laurie</LastName>
<ForeName>Karen</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Seqirus, 63 Poplar Road, Parkville, Victoria, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-7472-4138</Identifier>
<AffiliationInfo>
<Affiliation>Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riley</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-7904-4804</Identifier>
<AffiliationInfo>
<Affiliation>MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MR/R015600/1</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID> 200861/Z/16/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000276">Adjuvants, Immunologic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015164">Vaccines, Inactivated</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000276" MajorTopicYN="N">Adjuvants, Immunologic</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005289" MajorTopicYN="N">Ferrets</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007117" MajorTopicYN="N">Immunization, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="N">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018448" MajorTopicYN="Y">Models, Immunological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015164" MajorTopicYN="N">Vaccines, Inactivated</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31425503</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1007294</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-19-00528</ArticleId>
<ArticleId IdType="pmc">PMC6715255</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2016 Jan 1;213(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26142433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2018 Jan 16;48(1):174-184.e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29343437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Feb 18;27(8):1192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jul;83(14):7151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):7962-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Apr 10;10(1):1660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30971703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1974 Feb;72(1):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4522247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2016 Jan 20;34(4):495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26706277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jul 11;90(15):6936-6947</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27226365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2016 Jan 20;34(4):540-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26667611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1979 Dec;140(6):829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">541521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(7):e1002802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22829765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2015 Aug 15;195(4):1617-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26170383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Apr 11;13(4):e0193680</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29641537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2011 Dec;30(12):1081-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 29;453(7195):667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18449194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Res Methodol. 2010 Mar 08;10:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20210985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):340-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2010 Mar 27;375(9720):1100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2015 Jul 21;314(3):237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26197184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2018 Oct 1;14(10):e1006505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30273336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2018 Feb 16;67(6):180-185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29447141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 Aug 20;16(8):e2004974</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30125272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 16;305(5682):371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15218094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2019 Mar;19(3):327-336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30745277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2018 Aug;53:187-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29890370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2015 Jan 1;33(1):246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24962752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 Jan;16(1):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29081496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2006 Oct;25(4):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17045819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 2011 Jun;72(6):463-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Dec 15;212(12):1914-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26014800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2015;11(12):2839-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Anim (NY). 2004 Oct;33(9):50-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15457202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14926-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1993;11(3):293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8447157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Nov 21;346(6212):996-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Aug 20;3(8):e2975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18714352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Sep 1;198(5):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2017 Apr;18(4):456-463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28192417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2018 Oct 30;67(10):1523-1532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29672713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 May 14;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31118518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2010 Jan 20;2(15):15ra5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2014 Sep;21(9):1253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24990904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2008 Nov;27(11):1004-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18833023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1261-1266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30622180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Sep 1;183(5):3294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Oct;19(10):1305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Jun 24;27(31):4187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19406182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2011 Feb 17;29(9):1812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2016 Sep 22;21(38):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27684603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2011 Jan;239(1):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21198671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2016 Jul 25;213(8):1537-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27432941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 1998 Mar;8(3):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis (Lond). 2016;48(6):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27030916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Med Bull. 1979 Jan;35(1):69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">367490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jul;84(13):6687-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1972 Dec;70(4):767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4509641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2017 Apr 1;215(7):1059-1099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28180277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2007 Nov 8;357(19):1903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12578-12583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29109276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(3):e1002418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22396639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e25797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 Aug 10;16(8):e2006601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30096134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jan 8;25(4):612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2017 Jan 5;24(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27847366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jul 9;523(7559):217-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26053121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26194761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2017 Sep 12;35(38):5209-5216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28789850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2015 Dec 2;7(316):316ra192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26631631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2015 Mar 03;13(3):e1002082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25734701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Autoimmun. 2011 Feb;36(1):4-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2017 Sep;20:84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28395850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2016 Mar 15;44(3):542-552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26948373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2015;11(4):961-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 21;6:19570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26791076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Apr 30;28(20):3582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20298818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2011 Dec;162(1-2):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Mar;89(6):3308-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 11;354(6313):722-726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27846599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 May 1;209(9):1354-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24415790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2018 Aug 23;36(35):5325-5332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30055967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2019 Jun;19(6):383-397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30837674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Oct 1;202(7):1011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20715930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2017 Feb;22:105-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28088686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2010 Jul;236:125-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20636813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Jun 23;12(6):e1005692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27336297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2013 Jul 29;210(8):1493-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23857983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2015 Jan 09;4:177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25621280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2016 Dec 29;64(5):544-550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28039340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2018 Jan 1;187(1):135-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29309522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Sep 21;9(1):3859</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30242149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2010 Feb;40(2):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19946883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2013 May;12(5):519-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23659300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2017 Sep 19;17(1):632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28927373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(6):2851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2016 Aug;144(11):2306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27018720</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
<li>Victoria (État)</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Londres</li>
<li>Melbourne</li>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Hay, James A" sort="Hay, James A" uniqKey="Hay J" first="James A" last="Hay">James A. Hay</name>
</region>
<name sortKey="Riley, Steven" sort="Riley, Steven" uniqKey="Riley S" first="Steven" last="Riley">Steven Riley</name>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Laurie, Karen" sort="Laurie, Karen" uniqKey="Laurie K" first="Karen" last="Laurie">Karen Laurie</name>
</region>
<name sortKey="Laurie, Karen" sort="Laurie, Karen" uniqKey="Laurie K" first="Karen" last="Laurie">Karen Laurie</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="White, Michael" sort="White, Michael" uniqKey="White M" first="Michael" last="White">Michael White</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31425503
   |texte=   Characterising antibody kinetics from multiple influenza infection and vaccination events in ferrets.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31425503" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020